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Abstract 

In this paper we present an algorithm for robust absolute 
position estimation in natural terrain based on landmarks 
extracted from dense 3-0 surfaces. Our landmarks are 
constructed by concatenating pose dependent oriented 
surface points with pose invariant surface signatures into 
a single feature vector; this definition of landmarks 
allows a priori  pose information to be used to constrain 
the search for landmark matches. The first step in our 
algorithm is to extract  landmarks from stable and salient 
surface patches.  These  landmarks  are  then stored in a 
closest point search  structure with which landmarks are 
matched eficiently using available pose constraints and 
invariant values. Finalb, an iterative pose estimation 
algorithm, based on least median squares, is wrapped 
around landmark matching to eliminate outliers and 
estimate absolute position. To validate  our algorithm, we 
show hundreds of absolute position estimation results 
from three different natural scenes. These results show 
that our algorithm can incorporate constraints on 
position and attitude for  eficient landmark matching and 
match  small  and  dense  scene  surface patches  to large and 
coarse model surfaces. 

1 Introduction 

Absolute position estimation determines the position of a 
robot in a global coordinate system by comparing data 
collected with onboard sensors to a stored model of the 
world. Often absolute position estimation is obtained by 
matching landmarks extracted from sensed data  to 
landmarks stored in a global database. The defining 
qualities of landmarks are an invariance to rigid 
transformation, stability in the presence of changes in 
viewing direction and illumination conditions, and global 
descriptiveness that reduces ambiguity during matching. 
In real situation, there often exists external information 
that can be used to guide the search for landmarks. For 
example, other onboard sensors (e.g., gyros) may give an 
initial estimate on the pose of the sensor. In another case 
domain knowledge is helpful; a car cannot be driven 
upside down. If this kind of information can be 
incorporated systematically into landmark search, then 
more efficient and robust absolute position estimation 
algorithms will result. 

To this end, we have developed a new representation for 
surface landmarks constructed from dense 3-D data. Our 
representation combines the pose of an oriented point on a 
sensed surface with a vector of pose independent 
invariants into a single feature vector. In this paper we 
show how, using this combined feature vector, it is 
possible to apply domain knowledge about the pose of the 
sensor in a systematic way to limit landmark search. 
Our application domain is autonomous navigation in 
natural terrain. One of the difficulties of navigating in 
natural terrain is developing a model for landmarks that 
applies to the irregular and highly variable surfaces 
encountered in nature. Spin-images [6][7] have been 
shown to be effective invariants for matching free form 
surfaces, and we use them as the invariant component of 
our landmarks. However, if spin-images are to  be used in 
landmarks, a way to select stable and distinct spin-images 
from all spin-images computed on a surface must be 
developed. In this paper we define spin-image saliency 
and show how to use it to select distinct landmarks. 
Matching of high-resolution local scene patches to a 
coarse model of the terrain is a useful capability for 
autonomous navigation. This capability allows a robot to 
determine its position in a global sense, which can 
ultimately improve mission planning as well as reduce 
dead reckoning errors. However, the large fraction of 
model surface not represented in the scene and the 
difference in resolution between the data sets  make this 
problem especially difficult for surface matching 
algorithms. To demonstrate the effectiveness of our 
algorithm, we present more than one hundred results from 
three different natural scenes where this problem is 
solved. 
Multiple researchers have shown that surface shape data 
can be used directly estimate the position between 
surfaces. Besl and McKay [l] and Zhang [14] developed 
iterative closest point algorithms (ICP) for aligning 
surfaces. These algorithms are effective, but they require 
an initial estimate of the alignment between surfaces. 
Sharp et al. [ 101 augmented the traditional ICP algorithm 
with invariants to increase the range of convergence but 
their algorithm is still fundamentally local. On the other 
end of the spectrum are absolute position estimation 
algorithms that require no knowledge of the pose between 
surfaces [6][7][5][3]. In this paper we develop the middle 
ground by creating an algorithm that can seamlessly 
incorporate as much pose information as is available to 
guarantee robust and efficient landmark matching. 



2 Surface  Landmarks 

We represent surfaces with meshes, piecewise linear 3-D 
surfaces composed of vertices and faces. We use surface 
meshes because they are proven representations for 
surface matching and can represent the complicated and 
irregular surfaces expected in natural scenes. Given a 
surface mesh, we can generate a landmark at any vertex 
using the 3-D position, surface normal and surrounding 
surface shape of the vertex. First we create an oriented 
point using the vertex position and surface normal. This 
oriented point def ies  the pose dependent component of a 
landmark and provides a coordinate system in which to 
def ie  the invariants used in matching. 
The surface invariants we use are based on spin-images. 
Spin-images are pose independent encodings of the local 
surface shape around an oriented point. Spin-images were 
introduced in [6] where they were applied to the problem 
of surface matching. Briefly, a spin-image is generated as 
follows. With respect to an oriented point, a 3-D point has 
two parameters: the distance from the normal line and the 
signed distance from the tangent plane defied by the 
oriented point. By projecting every surface point in the 
vicinity of an oriented point into a 2-D accumulator 
indexed by these parameters, an image is generated. This 
image is pose independent and, because of its finite 
support, has robustness to clutter and occlusion. 
When spin-images are defined at every vertex of a mesh, 
a high dimensional surface invariant manifold is 
generated. Since this set of spin-images contains a large 
amount of redundant information, this manifold for the 
most part exists in a small dimensional sub-space of the 
original spin-image space. Using this observation, it was 
shown in [7] that spin-images can be compressed using 
principal component analysis (PCA) and replaced by low 
dimensional tuples of invariants, called a spin-tuple, 
without significant loss in matching fidelity. 
With these definitions in hand, we can now give a precise 
definition of a landmark. A landmark defined at an 
oriented point is a feature vector generated from the 
concatenation of the oriented point position p = [pmpy,pJ, 
oriented point surface normal n = [nx,ny,nJ, and spin- 
tuple i = [il, ..., i J that results from compression of the 
spin-image generated at that oriented point. If the tuple of 
invariants has t components then a landmark is the t+6 
dimensional feature vector 

By combining pose and shape invariant information into a 
single vector, pose information can be used to limit the 
search during landmark matching. Surface position is 
used to limit search when bounds are placed on 
translation between model and scene and surface normal 
is used to limit search when bounds are placed on rotation 
between model and scene. Given these bounds, the 

invariant of a landmark is used to f i d  the exact match 
between model and scene landmarks. The use of pose 
estimates to limit search for landmarks will be explained 
in full in Section 2.3, but first we will explain some 
improvements to spin-image generation and selection for 
efficient matching. 

2.1 Landmark  Generation 

While sticking close to the original spin-image generation 
and matching algorithms, we have come up with some 
improvements to the original techniques that significantly 
increase matching accuracy and speed. To systematically 
show the benefit of our modifications, we have analyzed 
each modification by matching spin-images generated 
from two synthetic surface meshes. These meshes 
describe the same scene shape but are constructed to have 
different surface sampling, different mesh connectivity, 
and different randomly generated vertex position noise. 
These differences ensure that no two vertices from the 
two meshes correspond to exactly the same position in the 
scene, so corresponding spin-images generated from the 
different meshes will be similar but never exactly the 
same. To test the modifications, spin-images from one 
mesh were compared to spin-images from the other mesh. 
If the vertices corresponding to the best matching spin- 
images are also the closest vertices in Euclidean space, 
then the match was correct, otherwise the match is 
incorrect. For each modification, the percentage of correct 
matches and the match time are shown in Table 1 
As a starting point we matched spin-images generated 
using a cylindrical parameterization. To minimize the 
effect of mesh resolution and variability between vertices, 
we use a variant of the discrete version of surface 
interpolation proposed in [5]. In our approach, spin- 
images are still generated at vertices of the original mesh. 
However, a (different) set of points that is guaranteed to 
have a uniform distribution over the surface of the mesh is 
used to generate the spin-images. During spin-image 
generation, instead of incrementing the spin-image by 1 
for each point that falls within the spin-image support, the 
spin-image is incremented by a fixed interpolation point 
area. This guarantees that the spin-images encode surface 
area and not vertex density, which enables landmark 
matching between meshes of different resolutions. As 
shown in Table 1, using a cylindrical parameterization 
and surface interpolation we obtained 76.3% correct 
matches with matching taking 356 mslimage in our two 
synthetic data sets. 
The next modification was to change the spin-image 
parameterization from cylindrical to a spherical. As 
shown in Figure 1, the spherical parameterization projects 
a 3-D point into a spin-image using the radial distance p 
and the elevation angle 4. The motivation behind a 
spherical parameterization is to reduce spin-image 
inconsistencies due to surface normal error. In the 



cylindrical parameterization, the effect of the error in 
surface normal on the spin-image generated will increase 
with the distance from the oriented point origin. This can 
cause the outer pixels of the spin-images to become 
uncorrelated which will increase the variance of the pixels 
and decrease spin-image correlation. However, with the 
spherical parameterization, the effect of surface normal 
error will be constant across the image. If the images are 
compared through correlation, this means that a constant 
bias will be introduced between matched pixels but the 
pixel variance will remain the same, so the chance of 
correct spin-image matching improves. Using the 
spherical parameterization increased the correct match 
percent to 80.8% while the match time is roughly the 
same as before at 336 rnsl image. 

Figure 1 Spherical spin-image parameterization and 
hypercell bounds illustration. 

2.2 Landmark Selection 

The next modification was made based on the observation 
that many of the incorrect matches are occurring in areas 
of the mesh with high curvature. This seems reasonable; 
in areas of high curvature, surface normal cannot be 
computed robustly. If vertices with high curvature are 
eliminated from matching then the likelihood of obtaining 
correct matches goes up at the expense of eliminating 
some vertices that may have been matched correctly. 
To eliminate surfaces based on curvature we first smooth 
the surface mesh [ 111 and then compute curvature at each 
vertex [ 121. Then, for both meshes, we only generate and 
match spin-images at vertices that have a curvature that is 
less than a threshold (0.5 using Taubin's curvature 
measure). This modification increases the correct match 
percentage to 91 . l% and decreases matching time to  257 
mdimage . 
The final modification is to compress the spherical spin- 
images using principal component analysis [7]. For the 
test and the results presented in this paper, the spin- 
images were compressed from an image size of 50 bins to 
a spin-tuple dimension of 10; spin-tuples were compared 
using the l2 norm. Although the correct matching 
percentage decreased to 88.0%, the decrease in matching 
time to 61 ms/image makes the slight loss worthwhile. 
Taken as a whole, this sequence of improvements has 
increase the matching percentage to close to 90% (a 20% 
improvement) while decreasing the matching time to 61 
msl image, a 600% improvement. 

Table 1 Spin-image modifications. 

Modification % correct  Match  time (ms) 
Mesh  interpolation 

Spherical  parameterization 
Curvature  Masking 

Compression 88.0 

2.3 Landmark Saliency 

Surface symmetry or repetitive surface shape can cause 
spin-tuples from different places on a surface to  be 
similar. This can cause landmark matching errors 
because, a scene tuple may match a model tuple very well 
even though the object-centered position of the landmarks 
is different. If spin-tuples that are similar to other spin- 
tuples can be detected and removed from the matching 
process, then the likellhood of correct matching will 
increase. 
Saliency is a measure of how distinct a sample point is 
from other samples in  its set. In matching, salient points 
are the points least llkely to be confused with other points 
in the set. Saliency has been applied to the problems of 
face recognition [ 131 and stereo matching [8]. In our 
application, we would like to select the most salient spin- 
tuples on the model surface and use only those for 
matching. To do this we first need a definition and a way 
to compute spin-tuple saliency. 
Saliency is inversely proportional to the density of the 
spin-tuple distribution. Under the assumption that a 
mixture of gaussians can model the spin-tuple 
distribution, we use the kernel method [2]  to estimate the 
density at any point x in the spin-tuple space. At each 
spin-tuple ii from the model containing N spin-tuples we 
place a Gaussian distribution G, the sum of which defines 
the spin-tuple density p(x) at x 

The covariance xi is equal to the covariance of the entire 
distribution of spin-tuples sample up to a scale factor s. 
The covariance of the distribution is available from spin- 
image compression and the scale factor is set as suggested 
in [13] to 

4 
N 

s = ("(t + 2)) l/(t+4) 

To compute the saliency of each spin-tuple we compute 
p ( i i )  . Spin-tuples with a density above a threshold are 
considered to have a saliency that is too low for accurate 
matching and are eliminated as landmarks. 
Computing p( i i )  is an O(n2) process, however it can be 
speed up considerably using the efficient closest point 
search structure described in the next section. Using this 
data structure all of the spin-tuples within a hypercube 
whose size is defined by the major axis of the spin-tuple 



covariance X i  can be found efficiently. Then p ( i i )  can 
be computed using just these spin-tuples and associated 
gaussians. 
Figure 2 shows the landmarks on  a surface before and 
after masking by saliency. Most of the landmarks in the 
flat part of the surface are eliminated because in flat areas, 
spin-tuples will be very similar. However, the spin-tuples 
were not eliminated in flat areas that are close to 
interesting surface features. This indicates that 
eliminating features based solely on flat curvature would 
not be appropriate because it would eliminate some 
landmarks that are distinct for matching and, being on flat 
parts of the surface, more llkely to be accurate. 

Original  landmarks Salient landmarks 

Figure 2 Salient Landmarks. 

3 Efficient Landmark Matching 

Some knowledge of pose is usually available during 
landmark matching either from estimates derived from 
other sensors or problem context (e.g., a land vehicle does 
not drive upside down). By reducing the number of 
candidates during search for the best matching landmarks, 
this pose information can make landmark matching more 
efficient. It can also be used to reduce ambiguity between 
landmark matches; if multiple landmarks are similar then 
the closest one (in pose space) is chosen as the match. We 
use an efficient closest point search structure to store 
landmarks so that the incorporation of pose information 
into landmark matching is simple yet effective. 
Before describing how pose constraints are used to limit 
search in landmark matching, we give an overview of our 
algorithm for landmark matching. In landmark matching 
for absolute position estimation, a small scene data set is 
usually searched for in  a larger model data set. Model 
data is processed, before matching, to extract landmarks, 
which are then stored in an efficient closest point data 
structure as follows. First the model surface is 
interpolated and areas of high curvature are masked out. 
For the remaining mesh vertices, spherical spin-images 
are generated and these are then compressed into low 
dimensional spin-tuples using PCA. Surface landmarks 
(1) are then created by concatenating vertex position, 
surface normal and spin-tuples. These landmarks are then 
stored in the efficient closest landmark data structure. At 

runtime, a scene vertex is selected at random, and if it 
passes the curvature constraint, its spherical spin-image is 
generated using the model spin-image parameters. This 
spin-image is compressed using the model principal 
components and a scene landmark is generated from the 
scene vertex position, surface normal and spin-tuple. This 
landmark is then used to query the model closest 
landmark data structure to find the closest matching 
model landmark. 

3.1 Closest Landmark Search 

The closest landmark data structure used is a variant of 
the one first introduced in [9]. Their data structure enables 
efficient closest point search in high dimensional data 
using the simplification that if a closest point is not within 
a hypercube of size E, it will not be found. The basic 
search principal of operation is as follows. First, model 
landmarks are inserted into the data structure, and sorted 
lists for each coordinate of the model landmarks are 
created. Arrays of forward and backward pointers keep 
track of the true and sorted location each of coordinate for 
each model landmark. At runtime, the model landmarks 
within a hypercube of size E around the input scene 
landmark are found by first eliminating all model 
landmarks whose first coordinate is not within E of the 
first coordinate of the scene landmark. The sorted lists of 
coordinates and the forward and backward pointers make 
this a logarithmic process for each coordinate. This 
process continues sequentially through the remaining 
coordinates; in the end, the model landmarks remaining 
are those that are within the hypercube. The closest model 
landmark is then selected as the remaining landmark that 
has the minimum Z2 distance to the scene landmark. The 
efficiency of search is controlled by E; if E is made small 
then more points are eliminated early in the search and the 
overall speed of search is increased. 
In our approach we represent pose constraints as strict 
bounds placed on the translation and rotation angle 
between landmarks. A bounding box surrounding the 
scene landmark enforces the translational constraint; if a 
model landmark matches a scene landmark, its position is 
within the bounding box. We represent rotational 
constraints as a strict bound placed on the rotation angle 
between two landmarks. If two landmarks match then the 
rotation that aligns the surface normals of the landmarks 
is less than this angular bound. This angular bound can 
be transformed into a bounding box on surface normal 
coordinates. 
With these insights, modification of the Nene and Nayar 
data structure to incorporate variable pose constraints into 
the landmark matching problem is straightforward. 
Instead of using a hypercube of scalar bound E during 
closest point search, a hypercell with variable bounds 



is used. Each of the pose dependent coordinates uses a 
different bound which, as explained below, depend on the 
constraints placed on the translation and rotation between 
landmarks. Landmarks are organized so that the pose 
dependent landmark coordinates (position and normal) are 
searched first during closest landmark matching. 
Consequently, landmarks that do not meet the pose 
constraints are eliminated in the closest point search 
structure before any invariant information is considered. 
After the pose dependent coordinates have been searched, 
the pose invariant coordinates are searched using a fixed 
bound. The remaining landmarks meet the pose 
constraints as well as the invariant constraint. Finally, the 
best matching model landmark is chosen from the 
remaining landmarks as the one that minimizes the Z2 
distance between its invariant and the scene landmark 
invariant. 

3.2 Setting Hypercell Bounds 

To make the bounds explicit, suppose that the model 
landmark l m  matches a scene landmark I s  

I s  = [ ~ ~ l n ~ I i ~ ] ~  = ( p ~ , p ~ , p s , n ~ , ~ ~ , n s , i s , K  ,is) 

The strict hypercell bounds on translation between 
landmarks is established by the position bound .cP 

Because the bound on surface normal is expressed as a 
maximum angle a by which the surface normal can be 
rotated, defining the bounding box for surface normal is 
more involved. The basic idea is to construct the 
bounding box for surface normal as if it were the z-axis, 
given a, and then to rotate this bounding box to the 
landmark surface normal. A pictorial description of  the 
process is given in Figure 1. The strict hypercell bounds 
on surface normal coordinates can be represented by the 
equation 

We use a single bound on distance between invariants E'. 

We found that setting to the average distance between 
nearest neighbor model invariants produces good results. 
E' can be computed quickly by randomly querying the 
closest landmark data structure with a few existing model 
landmarks and taking the average distance between 
closest landmarks. The strict hypercell bounds on surface 
normal coordinates can be represented by the equation 

It should be noted that the although the position and 
invariant bounds do not depend on the individual scene 
landmark position, the surface normal bounds do and 
must be computed anew for each scene landmark. 

4 Robust Surface Matching 

We match multiple scene landmarks to the model 
landmarks for the following reasons. First, a single 
landmark is not sufficient for computing a rigid 
transformation between model and scene; using position 
and normals, at least two landmarks must be matched. 
Second, if part of the model is occluded then the scene 
may contain landmarks that do not appear in the model. 
Finally, scene clutter and sensor noise can cause 
mismatches between model and scene landmarks. These 
mismatches need to be detected and removed so that they 
do not corrupt the final position estimate. Motivated by 
the Iterative Closest Point (ICP) algorithm [1][14]  we 
have developed a robust iterative position estimation 
algorithm that handles multiple landmarks and eliminates 
landmark mismatches. An iteration has three stages: 
landmark matching, robust pose estimation and landmark 
transformation. We use an iterative algorithm because, it 
allows us to enforce geometric consistency between 
landmarks while computing the rigid transformation that 
aligns the scene to the model. 
To match landmarks, first, multiple vertices are selected 
at random (on order 100) from the scene. If a selected 
vertex passes the curvature constraint, then its landmark is 
generated and the closest matching model landmark, 
which is within the pose constraints, is determined. This 
process is repeated for the remaining selected vertices, 
which generates multiple model landmark to scene 
landmark matches [Zy , Z; ] . 
Next, a robust Least Median Squares (LMedS) pose 
estimation algorithm is employed to remove mismatches 
and estimate pose. This algorithm investigates multiple 
triples of landmark matches to f i d  a triple that is free of 
mismatches. The number of triples n is based on the 
expected percentage of mismatches o and the desired 
probability P of obtaining a sample without outliers. 

= h(1- P )  h(1- (1 - 0 1 ~ )  
For each triple, the best Least Squares (LSQ) rigid 
transformation (R,t) that aligns the scene landmarks to the 
matched model landmarks is computed [4]. Given this 
transformation the residual errors are computed for each 
landmark 

If the median residual error for these matches is less than 
the median residual error computed for all previous 
transformations r,,, , the current transformation becomes 
the best encountered so far (Rbesc,tbesr) . The process is 



repeated for all of the n triples. Next the robust standard 
deviation 

5 
n - 3  

0,' = (1.4826( 1 + -))' rmed 

is computed, and using 0, , a landmark match is 
eliminated if 

9 = ll%estP; + tbest - Pi"1r ' cr 

Using the remaining landmarks, a LSQ transformation is 
computed and it becomes the transformation for the 
current iteration. 
In the last step of each iteration the position and surface 
normal bounds are reduced. This is reasonable, because 
the scene surface is converging on the model and the 
distance between scene and model vertices as well as the 
angle between scene and model normals is decreasing. To 
set the new bounds on position and normal we use the 
algorithm presented by Zhang [14] for setting a threshold 
between points in his iterative closest point algorithm. 
This algorithm is based on constructing a histogram of the 
distances between matched points and from this 
histogram selecting a threshold that keeps point matches 
that are within the f i s t  mode of the histogram. This 
algorithm is applied directly to determine the new 
position bounds (E: ,  E; ,  E,") . This algorithm can also be 
applied to the matched surface normals if the angle 
between matched landmarks is used instead of the 
distance between vertices. The algorithm determines a 
new surface normal angle bound a which is then used to 
set the new bounds on surface normal (E," , E; ,  E," ) . 
As the iterations progress, the position and surface normal 
bounds decrease. This has the effect of enforcing the 
geometric consistency of matches. Since the distance 
between scene and model matches becomes smaller and 
smaller, the geometric configuration of model landmarks 
approaches the geometric configuration of the scene 
landmarks; this is the definition of geometric consistency. 

5 Results 

To test our algorithm, we collected various 3-D scans of 
natural terrain using a long range scanning laser 
rangefinder. The rangefinder has a maximum range of 
800 m, a 10" field of view (FOV) with a programmable 
scan pattern that allows a maximum of 500x500 pixels to 
be collected. 
The data sets for our f is t  result were taken of a tree, rock 
and bush covered slope. Two scans were taken; one 
approximately 300 m from the slope and the other from a 
slightly different attitude and 250 m from the slope. Each 
scan had a 10" FOV and 500x500 samples. The ground 
truth change in position between the scans was 
determined through surveying of targets surrounding the 

sensor. To create the model mesh, the samples from the 
first scan were projected into a 10" FOV, 200x200 pixel 
range image; samples falling into the same pixel were 
averaged. From the range image a mesh was created. 
Similarly, to create each scene mesh, a 2"  FOV, 50x50 
pixel range image was created from a view slightly 
shifted from the sensor origin of the second scan. Using 
this procedure, each scene mesh covered approximately 
4% of the model surface and the resolution of each scene 
mesh was 2x the resolution of the model. 

Representative Scene and Model Matches 

Figure 3 Surface  matching result for  a  tree  covered 
slope. 



Representative Scene and Model Matches 

Figure 4 Surface matching result for a rocky cliff.. 

We extracted 80 scenes from the second scan and 
successfully matched them to the model surface. Some 
representative scene meshes (color) are shown 
superimposed on the model mesh (gray) in Figure 3. As 
shown in the figure, scene meshes are only created in the 
region of the overlap between the scans. Figure 3 also 
shows a single scene mesh matched to a model surface, a 
close-up of the model and scene meshes showing the 2x 
difference in resolution and a 2-D slice cut horizontally 
though the two meshes showing the accurate alignment of 
the model and scene. 

For these results we placed a strong bounds on rotation 
between landmarks (a=lO") and no constraint on the 
position between the landmarks. These constraints would 
be typical of a sensor platform equipped with gyros. 
Typical registration and timing result are given in 
Table 2. The table shows that the registration errors axe 
within the resolution of the meshes being registered and 
that the entire matching process including landmark 
generation, matching and alignment takes less than 20 
seconds on a 174 MHz RlOOOO SGI 0 2  workstation. This 
result shows that we can rapidly match small scenes to a 
large model with a 2x difference in resolution. 
Figure 4 shows a result for two scans taken of a rocky 
cliff. In this result, the two scans are taken with a lateral 
shift of 0.6 m between scans and the cliff face is 
approximately 16 m away, 49 scenes were generated from 
the second scan in exactly the same way as explained 
above. All but three of the scenes were correctly matched 
to the model. The scenes that were not matched correctly 
corresponded to the flat region on the right side of the 
model. This region (as shown in Figure 2) lacked 
adequate salient landmarks, so matching enough 
landmarks in this region was not possible. As in the above 
result, no bound was placed on translation and a small 
(10") bound was placed on the maximum rotation 
between landmarks. As shown in Figure 4,  the alignment 
of the surfaces is quite accurate. However, 
Table 2 shows that the error in the absolute translation 
and rotation are larger than expected. The cause of  this is 
inadequate survey data to accurately estimate ground 
truth. The final result shows the stitching together of 13 
scans of a rocky slope taken as the sensor was 
mechanically panned. The scans were taken 5" apart and 
each had a 10' FOV and 500x500 samples. Each scan was 
projected into a 200x200 range image with a 10" FOV 
and the landmarks from adjacent scans were matched. 
During matching, a 35 m position bound and a 30" 
surface normal bound was placed on the landmarks. 
Knowledge of pan angle was not used to initialize the 
rotation between views. Figure 5 and 
Table 2 shows that this type of panoramic data can be 
accurately and rapidly matched. This result also 
demonstrates the accurate matching of two surfaces that 
have only 50% overlap. 

6 Conclusion 

We have presented and algorithm for robust and efficient 
surface landmark matching. Our algorithm is based on 
intelligent landmark selection and the incorporation of 
pose information into the landmark matching process. 
We have shown results where a small scene patch is 
matched to a coarse model. This scenario is particularly 
difficult because of the difference in resolution between 
the model and scene and the relatively small size of the 



scene relative to the model. In the future we plan to apply 
this work to self-localization of autonomous aerial 
vehicles and precision landing on comets and asteroids. 
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Table 2 Absolute position estimate results and parameters. 

Result 

8.2 s 2.4 s 23.0s  0.35 m 0.25 m 0.10“ 0.12 m 5.0” 0.0 m Panorama 
4.2 s 2.7 s 10.9 s 0.17 m 0.32 m 0.61” 0.16 m 0.3” 0.6 m Cliff 
4.4 s 4.2 s 11.4 s 0.19 rn 0.45 m 0.19” 0.59 m 2.2” 50.0 m Slope 

Time 
Time  Time Generation Resolution  Resolution Angle Error Rotation Translation 
Align Match Landmark Scene Model  Rotation Translation True True 

Angle Error 

Stitched panorama 

Figure 5 Surface matching result for a panorama of images. 13 scans were taken with 5’pan between scans. 


